基于轻量级多尺度聚合网络的红外图像电子变倍

Electronic Zooming of Infrared Image Based on Lightweight Multi-scale Aggregation Network

  • 摘要: 为了解决光电领域中低分辨率红外图像影响观瞄的问题,构建一种轻量级多尺度聚合网络算法来增强电子变倍时中心区域图像分辨率,该算法首先使用不同大小的尺度核从图像中提取特征信息,并利用浅层残差结构将局部多尺度残差特征有效聚合在一起,以获得更强大的特征表示能力;然后采用基于对比度感知的通道注意层来聚合更多尺度特征信息,最终重构出具有丰富细节而清晰的高分辨率红外图像。仿真实验结果表明,本文所提出的电子变倍方法在不引入额外参数的情况下能够提取出精细的多尺度特征信息,获得清晰的重建效果。

     

    Abstract: To solve the problem of low-resolution infrared images affecting viewing and aiming in the photoelectric field, a lightweight multi-scale aggregation network is proposed to enhance the resolution of the central region when the IR image is zoomed. First, the algorithm uses scale kernels of different sizes to extract feature information and employs a shallow residual structure to effectively aggregate local multi-scale residual features, thereby obtaining stronger feature representation capability. Then, a channel attention layer based on contrast perception is used to aggregate more multi-scale feature information. Finally, a high-resolution infrared image with rich detail and clarity is reconstructed. Simulation results show that the zooming method can extract fine multi-scale feature information without introducing additional parameters and can produce clear reconstruction results.

     

/

返回文章
返回